SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

SOFTWARE COMMUNICATIONS ARCHITECTURE
SPECIFICATION 4.0

USER'S GUIDE

Notice: This document should be
considered draft. JTNC is soliciting
feedback and review from community,
especially in regards to sections 3.22.2
and 3.23. Comments and suggestions

07 November 2012 may be emailed directly to:
. jtrs-sca@spawar.navy.mil
Version: 1.0

Prepared by:

Joint Tactical Networking Center

33000 Nixie Way
San Diego, CA 92147-5110

Statement A - Approved for public release; distribution is unlimited (07 November 2012)

mailto:jtrs-sca@spawar.navy.mil

SCA Specification 4.0 User’s Guide

REVISION SUMMARY

Version: 1.0
07 November 2012

Version

Revision

0.3

Initial Release

1.0

SCA 4.0 Release

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

TABLE OF CONTENTS

L SCOPE ... bR b et bbbt e s 9
1.1 INTOrmMative RETEIENCESoiviiiiiiiieiee ettt 9
2 SCA INTRODUCTION ...ooioiiieieieie ettt sttt tessa e e e e aessestesaessessaenaaseessenees 10
2.1 Separation of Waveform and Operating ENVIironment..............ccooeiiiinininineniniseee, 10
2.2 Operating ENVIFONMENTcoiiiiii ekt 10
2.2.1 Application Environment Profiles ... 10
2.2.2 Middleware and Data TranSTercccciiiiieie it 11
2.3 JTRS Application Program INTErTACESceiriiiiieiiieninc it 11
3 TOPIC ORIENTED GUIDANCE AND SUPPLEMENTARY INFORMATION............. 13
3.1 CORBA PIOfIlES ..ottt ettt s st e et e s be et e et e e reenteenneaneenreens 13
3.1.1 Guidance 0N the USE OF ANYccuiiiiiici et re e nae e 13
3.1.1.1 Rationale for restrictions on the use OF ANYccccceiiiiiiiieii e 13
3.1.2 Guidance on the availability of commercial ORBs implementing these profiles............... 13
3.1.3 Use Case for the Lightweight profile..........ccccooieeiiiiiiie e, 13
3.1.4 Guidance on restriction interface data tyPeS.........cocveviiieeiiiieiiie i 15
3.1.5 Rationale for CORBA feature inclusion in the profiles............cccocovvieiii i, 15
3.2 PUSH MOAEL......oiiiiiiec ettt b e b bbb re e 15
T R O =T VT PP SS PR 15
3.2.2 External framework Management..............coveveiieiiiiiciic e 17
3.2.3 Registered and obtainable provides POrtScccoveiiiicii e 18
3.2.3.1 Registered ProVides POITS........cceiieiieiiiiieieeie e ste ettt sreeae e sre s 18
3.2.3.2 Obtainable Provides POILScccueiieiiieieieece et sre s 19

3.3 Enhanced Application CONNECHIVILY..........cccoiiiiiiicie et 20
3.3.1 BACKQIOUNGoouiiiiieite ettt et e e e be e te e e e saeesteensesreete e 20
3.4 NeSted aPPIICALIONScc.viiiieiiiee ettt e e ra e sreenneareeare e 21
3.4.1 Use cases for nested appliCationS...........cccveiieiiiiieii e 21
3.4.2 How nested applications Work inthe SCA 4.0cccooveiiiie i, 23
3.4.2.1 ApplicationFactoryComponent support for nested applicationscc.ccccevevuienne. 23
3.4.2.2 ApplicationManagerComponent support for nested applicationsc.ccceevuvenee. 25

3.5 Application INTErCONNECTIONccviiiieiie e 25
351 OVEIVIBW. ...ttt ettt ettt b et at e bt e bt e s e e bt e b e e st e e b e e beenbesbeenbeeneeabeente e 25
3.5.2 Use case for interconnecting appliCationsccueeceeiiieiiieiie e 26
3.5.3 Application interconnNeCtion AESIONccvveiiiiiiee it 26
3.5.4 Application interconnection implementation............cccoccveiieiie e 27

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

3.5.5 ApplicationFactoryComponent support for interconnected applications.............c.ccccceeuee.. 28
3.6 Enhanced allocation Property SUPPOITccuiiiieiiieieriesiese s 29
BiB. 1 OVEIVIBW ...ttt bbb bbbt bbbttt bbbt bbbt 29
3.6.2 Descriptor structure for nested appliCatioNScoeveiiririienieee e 30
3.6.3 Enhanced Allocation PropertiesS in SCA 4.0......oooiiiiiiiiiiiesieeee e 30
3.6.4 Dependency Hierarchies in SCA 4.0 ..o 31
3.7 SCA WaVeform CONSTIUCTION........cc.oiuiiiiiiiiiieiiee et sb bbb 34
BT L OVEIVIBW ..tttk e bbb bR e Aottt bbbttt e s 34
3.7.2 FM3TR Waveform eXampPle........cc.oooiiiiiiiiiiiiee st 34
3.8 Resource and Device Interface DeCOMPOSITIONc.cceiiriiiiiiriinieiee e 36
Bi8.L OVEIVIBW ..ttt bbb bt btk e ettt b bbbt 36
3.8.2 Resource Related MOGITICAtIONScoiiiiiiiiiee it 37
3.8.2.1 Resource interfaCt CNaNQES.........coiiiiiiriiiieieie it 37
3.8.2.2 ComponentFactory Interface Changesccoerveiiririninieieee e, 39
3.8.3 Device Related MOITICALIONScoiiiriiiiiiiiieii sttt 39
3.8.3.1 Device and LoadableDevice interface Changesccoceeeeieneneneneneseeeeeeen, 39
3.8.3.2 ExecutableDevice Interface Changes..........coeieiiieienininieieeere e 41
384 SUIMMIAIY ...ttt bttt b bt e e AR bt bt e bt b et e nn et e n e 42
3.9 Refactored CF Control and Registration INterfacesccocooeirieieienineneniseeeeee 42
3.0, 1 OVEIVIBW ..tttk ettt bbb bbbt e bbb e bbbt bttt 42
3.9.2 DeviceManager Interface Changes.ccouiiiiiieiiiiie e 43
3.9.3 DomainManager interfaCe ChaNGEScovviieiiieiiere i 45
3.9.4 Application Interface ChanQeS..........cocoiiiiiiiiiieee s 47
3.9.5 ApplicationFactory Interface Changescooveieiiriiiie e 48
3196 SUIMMIAIY ..ottt b et bbbt bt b e bt e e bt et e e b e e ne e 49
3.10 StAtiC DEPIOYMENTottt bbbt b bbbttt 49
3101 OVEIVIBW ...tttk b bbbttt bt bbbt e bt e b et e bbbttt e s 49
3.10.2 Deployment BaCKGrOUNGcoueiiiiiiiiiiiiieieieee et 50
3.10.3 CONNECLION MANAGEMENToveeiieiete ettt bbbttt e e bbbt 50
3104 EXAMPIE .ttt bbbt 51
3.11 Lightweight COMPONENTSc.oiiiiiie ittt 51
311 T OVEIVIBW ...ttt bbb b bbbt b et et e bbbt b bttt e s 51

B 112 BNETITS ..ttt bbbttt b e bbbttt 52
3.11.3 AREINALIVE SOIULIONSoviiiiiiiiieiee bbb 53
3.11.4 Implementation CONSIAEIALIONScc.eiiriiiiiieieie et 56
3.12 SCA Next Development ReSPONSIDIITIESccoviiiiiiiiiiiisiee e 56
3121 OVEIVIBW ...ttt bbbttt b bbb bbbt h et e b et e bbbttt be e nes 56
3.12.2 Component Development AGNMENTcviiiiiiieeee e 56

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

3.12.3 COMPONENT PIOGUCESuviiiiiieiesiie sttt sttt sttt sttt enbe et e sbeesbeeneesreenae e 57
3.13 ComMPONENT IMOUEL.......ccuiiiiiiie et 58
3131 OVEIVIBW ..ttt bbb bbbt bt et e bbbt b ettt 58
3.13.2 Interfaces and COMPONENTS.......c..oiuiiiiiieiirie ettt bbb 59
3.13.3 Benefits and IMPHCAIIONScveiiiiiiiiiie e 60
3.14 SCA Maintanence Process — How To Develop a New PSM7? ..o, 62
B LA OVEIVIBW ...ttt bbbt bbbt bbbt et e bbbt bbbt nes 62
3.14.2 SCA Change Proposal Process — Submitter ROIEScoviviiiiiiniiiineee 62
3.15 Units of Functionality and SCA Profiles.........c.cciiiiiiiiiiiiii e 63
3151 OVEIVIBW ...ttt bbbt bbbt e bttt e bbbt bt e et e s 63
3.15.2 SCA UOFS N ProOfilES ..ot 64
3.15.3 Use Of UOFS and PrOfIlEScueiiiiiiiiieitisiieeeiiee it 64
3.16 What elements of OMG IDL are allowed in the PIM? ..o, 66
B.L6.1 OVEIVIBW ...ttt bbbttt btk R bbbt et e et et e bt e bt ab et be e e 66
3.16.2 PIM BACKGIOUNG.......c.eoitiiiiiiieiieiieiete ettt ettt 66
3.16.3 PIM usage fOr SCA UEVEIOPELScveviiiiiiiiiiiiieieeee ettt 66
3.16.4 FULUIE PIM VOIULIONoviiiiicicieiie ettt 66
3.17 What is the Impact of the SCA 4.0 Port changes?...........c.cuoviiiiiienei e 66
317,10 OVEIVIBW ...ttt bbbt b kbbbt et ettt et b ettt e s 66
3. L7.2 POIt REVISIONS ...ttt b bbbttt b e bbbttt 67
3.17.3 Interface and Implementation DIiffErencCescccoceieiiiiiiiiiecee e 67
3.17.4 Implementation IMPHCAIIONSccviiiiiiiiiieie s 68
3.18 Rationale for DeviceManagerComponent Registrationccoceveveneninenenisieeieee, 69
3.19 Rationale for Removal of Application Release Requirementcccocviiiiininiieicienn, 69
3.20 How to Find and Use Domain RegiStry REfEreNCES.........ccoviiiiiriiieie e 70
3.20.1 OVEIVIBW ...tttk etttk bbbt e bbbt b bt e bt e et et e bt b bt e et s e nes 70
3.20.2 PlatformComponent registration approaches............cooeveiirininieieiesese e 71
3.20.3 Implementation aPPrOACH ..o 71
3.21 Legacy Support Via V222 _COMPAT DIFeCHIVEcccoiiiiiiiieiiieee e 72
3.22 ComMPONENT LITE CYCI ..ot 72
3.22.1 OVEIVIBW ...ttt bbbttt b bt bbbt bt h e e bt et e b et e bt b e bttt et e s 72
3.22.2 ComponentBase State Model <Requesting Additional INPUt>cccevcvevriieiveienieeen, 72
3.23 Configuration Properties <Requesting Additional INput>.........cccooeiiiiiiiinneen, 73
BL24 BYP8SS ...ttt bRt bR R bR bR e bbb ne e 73
Bi24. 1 OVEIVIBW ...ttt bbbtk b e bbb bbbt h et e b et e bbbttt n e nes 73
3.24.2 DETINITIONS ...ttt b et bbbttt e bbb b bttt ne e nes 74

4

SCA Specification 4.0 User’s Guide Version: 1.0

ACRONYMS

07 November 2012

Vi

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

Figure 1 Example Radio POWered DY SCA 4.0ooiiiiiie e 10
Figure 2 JTR Set and Waveform INtErfaces.cccooiiiiiiiiiiiccc e 12
Figure 3 Lightweight Component in Lightweight profile ... 14
Figure 4 Component distributed across multiple processing elements...........cccooeveieneniinininnns 14
Figure 5 Distributed component With FPGA POrtionccooiiiiiiiiiiiisieeeee e 15
Figure 6 PUll model regiStrationccoiiiiiiieiie e 16
Figure 7 Push model regiStrationoouoiiiiieiiiii s 17
Figure 8 External framework managementccooiiiiiiiiiiiece st 18
Figure 9 Registered port MANAGEMENTcviiiirerieriirie ekttt sr bbb 19
Figure 10 Obtainable port ManagemMENT............ccoiiiiiiiiiiiiei et 19
FIQUIE 11 POt HTECYCIES ...ttt 20
Figure 12 Simple nested appliCatION.........uiiiiiieiee it 22
Figure 13 Security domain divided appliCationccoviiiiiiiiiieiese e e 23
Figure 14 Inter-application CONNECTIONScouiveiiiiiiiisiiii ettt sr bbb 27
Figure 15 Connectivity SPECITIC EXAMPIEcviiiiiiiiiii it 28
Figure 16 Inter-application connections with external POrtsc.cocoviiiiiniiniinieiee e 29
Figure 17 Dependency HIEIArCHY ..ottt 32
Figure 18 Dependency Hierarchy and Sub-ApplCatioNScccoe it 33
Figure 19 Allocation property EXaMPIEScccove it 33
Figure 20 Example FM3TR SCA Waveform DESIGN...........cciiieiereiiiiiisiseseeeee e 35
Figure 21 Example Deployment 0Ff FIM3TRcoiiiiiiiiieieee e 36
Figure 22 ExecutableDevice Interface Inheritance Relationship ... 37
Figure 23 Resource Interface RefaCtoringcccooiiiiiiiiiiiiicce e 38
Figure 24 Resource Interface Optional INTErfaCEScccvviiiiiiiiiieie e 38
Figure 25 ResourceFactory Interface RefaCtOrNgGccovviiiieiiiieieie e 39
Figure 26 Device Interface Inheritance RefaCtoring..........ccovviiiiieiiniiiniseeeee e 40
Figure 27 Device INterface REFACIONNGoiviiiriiiiiieiiese e 40
Figure 28 LoadableDevice Interface REfaCIOrING..........ccoiiriiieiiiieieie e 41
Figure 29 ExecutableDevice Interface Refactoring.........ocooviieiiieiini i 42
Figure 30 DeviceManager Interface Refactoring — registration Operationsccccoeeeererenennnns 43
Figure 31 DeviceManager Interface Refactoring — attributes ... 44
Figure 32 DeviceManager Interface Refactoring — miscellaneous operations.............c.ccceveeverennns 45
Figure 33 DomainManager Interface Refactoring — registration Operations............ccccocevceverennnnnns 46
Figure 34 DomainManager Interface Refactoring — manager registration operations..................... 47
Figure 35 DomainManager Interface Refactoring — installation operationsccccocevevveninnnnnns 47
Figure 36 Application Interface RefACIONINGcovvrviiiriiiiiiiee e 48
Figure 37 ApplicationFactory Interface RefaCtoring.........ccoouvvviiieiiiiiiiisisee e 49
Figure 38 ApplicationFactory Role in Component Deployment............ccoovviriiinieienene s 50

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

Figure 39 Resource Interface Optional INNeritanCe ..o 52
Figure 40 Component Optional REAHZAIONccoiiiiiiiiiicc e 53
Figure 41 Optional RealiZation ISSUESoiviiiiiiiiiiiiieieie et 53
Figure 42 Component Optional INNEITANCEccoiiiiiiiiiec e 54
Figure 43 Lightweight Components within an Address SPace...........cccvvvreririeiieieieiese e 55
Figure 44 Successful Use of Lightweight COMPONENTS...........ccoeiiiiiiiiiiinieeeieee e 55
Figure 45 General Allocation of Components to Radio Developers...........cocooveveieieieniiencnieins 57
Figure 46 SCA Component RelatioNSNIPS.cc.oiiiiiiiiiiiee e 59
Figure 47 SCA Change PropoSal PrOCESS.........ccueiiiiiiiiiisieieieie sttt 62
Figure 48 SCA Profiles with OE Units of FUNCHIONAIITYcocoiiiiiiiiiienicccce e 65
Figure 49 Port Interface REFACIONNGcooiiiiiiiiii s 67
Figure 50 Port Implementation DIffErENCEScooiiiiiiiiiiii e 68
Figure 51 Sequence Diagram depicting application release behaviorccccoeieiinniiinninns 70
Figure 52 Resource Interface Features Optional INNeritancecccocvviiininiinicieic i 71
Figure 53 Resource Interface Features Optional INheritance ... 72
Figure 54 Component Lite CYCIEouiiiiiiieee i 73
Figure 55 Hlustration of BYPass CONCEPLSciueviiuiriiriiriiiiieiieiieieie sttt 75

SCA Specification 4.0 User’s Guide Version: 1.0

07 November 2012

1 SCOPE

This User’s Guide is intended to provide practical guidance and suggestions for developing
Software Communications Architecture (SCA) compliant products. It is not a substitute for the
SCA specification, but a companion document to provide implementation guidance and design
rationale outside the structure of a formal specification. This document will expand in content and
detail as SCA user experiences accumulate.

11

INFORMATIVE REFERENCES

The following is a list of documents referenced within this specification or used as reference or
guidance material in its development.

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]

[12]

[13]

Software Communications Architecture Specification Appendix B: SCA Application
Environment Profiles, Version 4.0, 28 February 2012

Common Object Request Broker Architecture (CORBA) Specification, Part 1: CORBA
Interfaces, Version 3.2 formal/2011-11-01, November 2011.

Common Object Request Broker Architecture (CORBA) for embedded Specification,
Version 1.0 formal/2008-11-06, November 2008.

Software Communications Architecture Specification Appendix E-1 - Attachment 1: SCA
CORBA Profiles (from CORBA/e), Version 4.0, 28 February 2012

Software Communications Architecture Specification Appendix D - Platform Specific
Model (PSM) - Domain Profile Descriptor Files, Version 4.0, 28 February 2012

Software Communications Architecture Specification Appendix F - Units of Functionality
and Profiles, Version 4.0, 28 February 2012

UML™ Profile for CORBA™ Specification, Version 1.0 formal/2002-04-01, April 2002.

Software Communications Architecture Specification Appendix E-3: Platform Specific
Model (PSM) - Object Management Group Interface Definition Language, Version 4.0, 28
February 2012

Donald R. Stephens, Cinly Magsombol, Chalena Jimenez, "Design patterns of the JTRS

infrastructure”, MILCOM 2007 - IEEE Military Communications Conference, no. 1,
October 2007, pp. 835-839

Cinly Magsombol, Chalena Jimenez, Donald R. Stephens, "Joint tactical radio system—
Application programming interfaces”, MILCOM 2007 - IEEE Military Communications
Conference, no. 1, October 2007, pp. 855-861

Donald R. Stephens, Rich Anderson, Chalena Jimenez, Lane Anderson, "Joint tactical radio
system—Waveform porting”, MILCOM 2008 - IEEE Military Communications
Conference, vol. 27, no. 1, November 2008, pp. 2629-2635

JTRS Waveform Portability Guidelines,
http://jpeojtrs.mil/sca/Pages/portabilityguidelines.aspx

JTRS Open Source Information Repository, http://gforge.calit2.net/gf/project/jtrs_open_ir/

http://jpeojtrs.mil/sca/Pages/portabilityguidelines.aspx
http://gforge.calit2.net/gf/project/jtrs_open_ir/

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

2 SCAINTRODUCTION
2.1 SEPARATION OF WAVEFORM AND OPERATING ENVIRONMENT

A fundamental feature of the SCA is the separation of waveforms from the radio’s operating
environment. Waveform portability is enhanced by establishing a standardized host environment
for waveforms, regardless of other radio characteristics. An example diagram of an SCA-based
radio is illustrated in Figure 1. The waveform software is isolated from specific radio hardware or
implementations by standardized APIs.

Radio Set Operating Environment (OE) Radio Set
Audio Device Modem Device Ethernet Device| |Specific Control

= B =2 |2
JTRSAPIX JPAAPIX R
[WM Waveform AMMJ\I‘)
SCA ,."AEM SCA AP|5><

Operating Environment

Middleware, . SCA Core Framework
Data/Messaging Posix Real-Time

Transport Operating System {

Figure 1 Example Radio Powered by SCA 4.0

2.2 OPERATING ENVIRONMENT
2.2.1 Application Environment Profiles

To promote waveform portability among the many different choices of operating systems, the SCA
specifies the operating system functionality relative to IEEE POSIX options and units of
functionality. The Application Environment Profiles (AEP) specification, reference [1], identifies
specific operations such as pthread create(), open(), etc., that are available for use by
ApplicationResourceComponents and must be provided by the radio platform. A platform
developer may provide additional operating system functions, but the waveforms can only access
the functions defined in the AEP. This assures any SCA compliant radio can execute the
waveform.

SCA defines two profiles, AEP and Lightweight (LWAEP), that may be used across a range of
radio sets ranging from a small handheld to a multichannel radio embedded within an aircraft. The
LWAEP is a subset of the AEP and intended for very constrained processors such as DSPs that
typically do not support more capable real-time operating systems.

10

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

Some waveforms may require networking functions such as socket() or bind(). If a radio platform
is going to host waveforms that utilize those operations, it must support the Networking
Functionality AEP as an extension to the primary AEP profile. Reference [4] provides additional
information related to networking.

2.2.2 Middleware and Data Transfer

In Figure 1, the radio platform provides middleware and data/messaging transport in addition to the
real-time operating system. Middleware is a generalized service which facilitates messaging
between software components, possibly hosted on separate processors. SCA 2.2.2 and its
predecessors mandated CORBA as the middleware layer and deferred the specific transport
mechanism to the radio set developer. Historical data transfer mechanisms have been TCP-IP and
shared memory. The former can introduce substantial latency and perhaps has unfairly tarnished
CORBA'’s reputation within the radio community. A faster transport such as shared memory
generally yields latencies acceptable for high-data rate waveforms.

SCA 4.0 deleted the CORBA requirement and defined middleware independent APIs, although
they are still specified in interface definition language (IDL) (see reference [2]). Radio developers
may continue using CORBA, or select a different middleware such as the lightweight Remote
Procedure Call (RPC) used by the Android platform. Waveforms would require recompilation for
different middleware implementations, but the APIs should remain the same for the most part, thus
maximizing waveform portability.

2.3 JTRS APPLICATION PROGRAM INTERFACES

Figure 1 contains several independent APIs which separate the waveform from the radio set. The
primary emphasis of the JTRS API standardization efforts has been upon interfaces between the
waveform and radio set such as those illustrated in Figure 2. The internal interfaces and transport
mechanisms of the radio are defined as necessary by the radio provider. The underlying intent is to
provide portability or reuse of the waveform between radio platforms and not necessarily
portability of the radio operating environment software. For additional discussion on waveform
portability, see [11] and [12].

11

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

Operator . | | |1 System
Control Control
HMI -
Service .g
S
K3}
Modem L | | | L Modem =
Hardware Device g
® S
® ©
® 3
Audio 1| [IL™ Audio =
Hardware Device
Set-Specific Standardized
Interfaces JTR Set APIs

Figure 2 JTR Set and Waveform Interfaces

There has been a conscious effort to maintain a clear separation between the SCA and the JTRS
APIs which define services provided by the radio set to the waveform such as GPS, time, etc. The
distinction not only maintains the integrity of SCA framework and preserves its applicability across
a wide range of domains, but also allows the content of each family of specifications to evolve
according to its own timetable. A partial list of the JTRS APIs is provided in Table 1. The APIs
have been developed with software design patterns to define a scalable and extensible
infrastructure. See [9] and [10] for an introduction to the aggregation, least privilege, extension,
explicit enumeration, and deprecation design patterns for JTRS APIs.

Table 1 Partial List of JTRS APIs

Audio Port Device API Ethernet Device API
Frequency Reference Device API GPS Device API
Modem Hardware Abstraction Layer (MHAL) API Serial Port Device API
Timing Service API Vocoder Service API
MHAL On Chip Bus (MOCB) API Packet API

JTRS Platform Adapter (JPA) API

The JTRS Platform Adapter (JPA) identified in Table 1 is both an API and a design pattern for
controlling the waveform by the radio set. (It is a particularly vexing problem, to define a portable
command/control interface for waveforms across multiple radio sets.) This API uses the SCA
PropertySet interface as a container for waveform parameters controlled and manipulated by the
radio set. It also supports bidirectional communication, permitting the waveform to provide status
to the radio set.

12

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

3 TOPIC ORIENTED GUIDANCE AND SUPPLEMENTARY
INFORMATION

3.1 CORBA PROFILES

3.1.1 Guidance on the use of Any

On systems with limited resources, the use of the OMG IDL Any data type should be minimized.
The Any data type should not be used within the data path or in situations with demanding
performance requirements. When an Any type must be used, it should be associated with a simple
type. The CF::Properties data type is the SCA location that contains an Any data type within its
data structure definition.

3.1.1.1 Rationale for restrictions on the use of Any

The Any data type should be avoided due to the significant performance and resource consumption
implications that it levies on the method calls that use them. Many ORB providers supply insertion
and extraction operations for known simple types and transport them without large TypeCodes that
can add significantly to message sizes (in some cases the type information can more than double
the size of the messages). The potential size implications are even greater for complex types, the
CORBA compiler must generate code for insertion and extraction and add it to each component
using the interface as well as adding the type information to each message.

The additional size and processing complexity associated with marshaling and unmarshalling
utilizes resources that could be better directed towards providing application critical capabilities.

It is not necessary to find an ORB that does not support complex types in Any, or to try to remove
the capability from a commercial product because most of the resource savings is achieved not
from absence of the capability, but because the Application did not use that capability. However,
for user defined IDL types the Any capability is only turned on when the operator is generated by
the IDL compiler and used by the code. Some ORBs have the ability to optimize for size by only
including the Any capability when it is linked with the application through the use of a modular
architecture.

3.1.2 Guidance on the availability of commercial ORBs implementing these profiles

Initially there may be few, if any, commercial ORBs available that provide an implementation
tailored in accordance with the SCA specified profiles. With few noted exceptions, the Full and
Lightweight CORBA profiles are proper subsets of the CORBA/e Compact profile (see reference
[3]). This means that a processing element with sufficient resources could use a CORBA/e
Compact ORB and support nearly all permitted Application features and require minimal porting
effort.

3.1.3 Use Case for the Lightweight profile

The Lightweight profile is intended for extremely limited processing elements, such as most DSPs,
and assumes an approach for implementing SCA components (Resource or Device) that strives to
maximize performance and minimize resource utilization. In order to avoid resource intensive
features of the SCA for component management, such as the Resource interface and its inherited
PropertySet interface, the Lightweight profile accommodates partially realized SCA components,
Figure 3, or scenarios where the complete SCA component implementation is split between an
extremely limited and a somewhat less limited processing element.

13

SCA Specification 4.0 User’s Guide

GPP 1

Processing Element

<<ARC>>
B

A

Y

Platform Specific
Transport

% |

DSP 1

Processing Element

<<ARC>>

|

A

/

<<ARC>>
D

Platform Specific

Transport

Version: 1.0
07 November 2012

FPGA 1

Processing Element

% << ARC>>
F

A

A A

Platform Specific
Transport

==

ARC = ApplicationResourceComponent
Component D is CONTROLLABLE/INTERROGABLE

Figure 3 Lightweight Component in Lightweight profile

It is assumed that the component management functions, including the Resource interface are
realized on the less limited processing element and only port implementations (such as traffic data
handling) are realized on the limited processor, Figure 4.

GPP 1 DSP 1 FPGA 1

Processing Element Processing Element

<<ARC>> CORBA . <<ARC>>
B connectivit < D
'y A
A 4 I 4

% | % |

ARC = ApplicationResourceComponent
Component C contains the realization of a Component B provides port

Processing Element

Platform Specific

Platform Specific
Transport

Transport

Platform Specific
Transport

Figure 4 Component distributed across multiple processing elements

An alternative approach for applications is for an AssemblyControllerComponent to manage a
component directly, not using a Resource interface port. In that scenario the permitted data types
and method calls are restricted to those necessary for the port implementations. Note that some
current standard APIs such as, Audio Port Device and GPS Device would need to be modified to
follow these constraints. Coordination between the lightweight and management portions of a
component is outside the scope of this recommendation and not required to use CORBA.

Components may need to be deployed on even more limited processors such as FPGAs or have
interfaces to other components on such processors, Figure 5.

14

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

GPP 1 DSP 1 FPGA 1

Processing Element Processing Element Processing Element

] \
OiBA

<<ARC>> g ol <<ARC>> <<ARC>> E
B connectivity (o} D
A 3
vy \
Platform Specific Platform Specific Platform Specific
Transport Transport Transport

ARC = ApplicationResourceComponent
Component F contains the realization of a Component B provides port
Component F also has additional restrictions on it’s data types

1=

Figure 5 Distributed component with FPGA portion

Compatibility will be enhanced in these instances if data types are restricted to those realizable on
such processors. Therefore, components implementing the lightweight profile are encouraged to
avoid using the data types discouraged in the Permitted Data Types Section and marked with * in
the table of Attachment 1 to Appendix E-1 (see reference [4]).

3.1.4 Guidance on restriction interface data types
It is recommended that data types be restricted in any interface to modules implemented on

extremely limited processing elements such as FPGAs and most DSPs.

Interfaces to code modules implemented on extremely limited processing elements, such as
FPGAs and most DSPs, whether or not they are implemented in CORBA, are encouraged to refrain
from using the data types marked with * in the Lightweight CORBA profile.

This recommendation is intended to enhance portability of CORBA to non-CORBA
implementations and to ensure that data can be exchanged easily between CORBA and non-
CORBA components.

3.1.5 Rationale for CORBA feature inclusion in the profiles

The choice to include CORBA features in the profiles was driven by use cases. Some of these use
cases are listed along with columns comparing Full with minimumCORBA and CORBA/e
Compact in Attachment 1 to Appendix E-1 (see reference [4]).

3.2 PUSH MODEL
3.2.1 Overview
Prior versions of the SCA have been “pull model” oriented as shown in Figure 6. References are
exchanged, but to get the information that’s really needed, callbacks need to be made.
For example:

e getPort for pulling uses and provides ports

e Pulling attributes (e.g. devicelD, registeredDevices)

e Pulling Application Components from a Naming Service

15

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

DomainManager AppFactory [Iresolve I

[getRegisteredDevices]

.l /
R ¥
A _
\\4 NamingService
DeviceManager P
L ”
| getPort l
\ \
N
- V4

al [getPort] \A)pComponent
| getDevicelD I Device

Figure 6 Pull model registration

SCA 4.0 introduces a “push model”, Figure 7, architecture that allows for a direct exchange of this
information without callbacks. The primary benefits of this are better assurance and better
performance. Better assurance is achieved by limiting access to pushes only and eliminating the
need for a Naming Service. Better performance comes by reducing the total number of calls
involved. This can reduce startup and instantiation time. It also allows for the call back attributes
and operations to become optional and when not used this can reduce the implementation required.

For example:
e Device ID and Provides Ports can be pushed with the component registration and don’t
need to pulled later

e Registered components (complete with IDs and Provides Ports) can be pushed with
DeviceManagerComponent registration

e The DCD information can also be pushed instead of pulled by accessing a
DeviceManagerComponent attribute

e Direct registration of application components removes the need for a Naming Service

16

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

DomainManager

AppFactory
[registerDevicelManager]
T~
-~
~ -
‘[registerComponent]
~ -
DeviceManager

_- AppComponent

[registerComponent]

Device

Figure 7 Push model registration

3.2.2 External framework management

External Framework Management was also slightly expanded to accommodate a push model.
For example
e The return of installApplication now provides information that previously required separate
pull calls.

However in general the external framework management maintained the “pull model” support of
previous SCA versions.

The rationale for this approach was that it provided a good balance between performance,
capability and compatibility. It provides for greater performance when utilizing the push model for
external management. But continues to support unique use cases where pulls may still be needed.
It also allows for backward compatibility without violating the “least privilege” principle.

17

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

getName

- Pulls are maintained for
External CF
Management

’

X '
I create
- Currently only
N-—" supporting a “pull”
for external ports.

A\

.

External CF Management Syelemicaniel

getApplicationFactories
- Both Pull and Push model
capabilities are provided for

~

installApplication
- Application Factory

references and
various attributes are
returned to the call

AppFactory

Note: Push Model Ya-""

utilized for registration v

and “internal CF” DeviceManager
management K \

Device AppComponent

Figure 8 External framework management

3.2.3 Registered and obtainable provides ports

In order to implement a “push model” and allow continued support of all prior use cases, the
provides port semantics had to be enriched. SCA 4.0 provides for two types of provides ports,
termed “Registered” and “Obtainable”. Sometime these are referred to using names found in
previous versions draft versions “Static” and “Dynamic”. To avoid confusion, Registered Provides
ports = Static Provides Ports. Obtainable Provides Ports = Dynamic Provides Ports.

3.2.3.1 Registered provides ports

Registered provides ports are provides ports which have a lifecycle tied to the lifecycle of the
component. Registered ports are registered with the framework during component registration and
the framework will not attempt to retrieve them when making connections. Registered ports are
not explicitly released by the framework except through the component’s releaseObject operation.

This means a component can expect getProvidesPorts and disconnectPorts to not typically be
called for the provides ports it registered. In some cases, for assurance reasons, a component may
want to explicitly reject calls for these ports (e.g. raise an UnknownPort or InvalidPort exception).
In some cases, a component may want to allow ports that are “registered” to still also be
“obtainable”. Meaning the ports can be retrieved from getProvidesPorts and then connections to
the ports can be disconnected through disconnectPorts. It is left unspecified to allow the
component developer to customize this behavior to match the needs of the target platform.

However a framework that is built strictly to the specified requirements will not retrieve registered
provides ports through getProvidesPorts and will not disconnect connections to them through
disconnectPorts.

18

SCA Specification 4.0 User’s Guide

Version: 1.0
07 November 2012

connectUsesPorts
-Registered Provides
Portis supplied to
clients through

[

Registered
Provides Port

connectUsesPorts

)

\

Component

\ Core Framework
h © o | ’ Component

/

registerComponent

-Registered Provides
Port is registered with

the component

/!
!
/
&
,q’
\
\

disconnectPorts

-Called onthe uses side
only for Registered

Provides Ports

Figure 9 Registered port management

3.2.3.2 Obtainable provides ports

Registered provides ports are provides ports which are meant to have a lifecycle tied to the
lifecycle of a given connection. Obtainable provides ports are not registered with the component
and instead the framework will attempt to retrieve the ports through getProvidesPorts when they’re

needed to complete connections.

Obtainable provides ports are explicitly released by the

Framework via disconnectPorts when the connections to them are torn down. With obtainable
provides ports, by specifying connectionlDs on getProvidesPorts and calling disconnectPorts,
additional use cases and added functionality are supported that is not available within prior SCA

versions.

registerComponent

- Obtainable Provides Port are not

registered with the component

getProvidesPorts

-Called since Obtainable Provides ports
are not registered with the component

-

~
.
~

Component

’l \%\

[connectUsesPorts

Core Framework

:D Component

/
/
/

[Obtainable Provides Port]

disconnectPorts
-Called on both the uses and provides

side only for Obtainable Provides Ports

Figure 10 Obtainable port management

19

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

It is not specified that obtainable provides ports have to be tied to the lifecycle of a given
connection. Several use cases exist where it may have a longer lifecycle:

e A “backward compatibility” use case where a provides port that is still created and released
with the component, but simply not registered, mimicking more of the prior SCA pull-
model behavior

e A “fan in” use case where the same provides port instance is utilized to service multiple
connections, with reference counting used to dictate when it is finally released.

Note: Registered provides port lifecycle matchesthat

ofthe component. This isrestrictedbecausea Note: Not restricted, but
registered provides port must be registered with the also consider either
component and is not retrieved through registering the port with the
getProvidesPorts or released through disconnectPorts. component, or keeping it
' obtainable and creating it
Y during getProvidesPorts
! /
1 s 7
4 i’
| Lifecycle Description || Registered || Obtainable | S
’
/I,’
| componentcreation || ® | | [|l‘ ’
’
| initialize || P || ® |‘ Port Creation
| getProvidesPorts || ," | | ® |
[
| disconnectPorts ; | | | o |
Z Port Release
releaseObject / ® ® |k
Il LY
’ \
’ \
7 \
; Y}
Note: If registered port creation Note: If the Port was notreleased
encounters an error, the initialize previously through disconnectPorts,
error exception could be thrown. then releaseObject trumpsall

Figure 11 Port lifecycles

3.3 ENHANCED APPLICATION CONNECTIVITY

3.3.1 Background

Prior to the release of SCA 4.0, the SCA only supported the ability to deploy individual, standalone
applications. While multiple applications could be deployed on a platform, the SCA component
framework provided no direct support to interconnect or logically nest these applications. As a
result, the client creating the applications was left to do this manually, using a combination of
external ports and either “hard coded” interconnection or automatic interconnection, using
information gleaned from the application XML.

20

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

This approach was very limited, however, and required much of the client. As interconnection was
not automatically controlled by the SCA framework, a number of challenges were encountered, as
follows:

e Added complexity to client code — the client code needs to understand how to query for and
make port connections, and for some implementations also to utilize XML to introspect the
application information.

e Reduced security — in some systems, the ability to make CORBA port connections is
intentionally restricted, and for similar reasons, the ability to obtain the necessary CORBA
object references is restricted.

e Abstraction / Information hiding — in some cases, you may want an application to behave
like a single component, and include such a sub-application within an outer component.
Pre-SCA-4.0 frameworks did not support this manner of abstraction

e Distribution of applications — in some systems (typically those with an overall application
divided across two or more security domains) it is desirable to be able to segment an overall
application into two or more sub-applications, with sub-application creation and connection
occurring locally within the domain with minimal “bypass” traffic crossing domains during
creation. In prior versions of the SCA this ability was unsupported, leading to non-optimal
workarounds.

In SCA 4.0, a set of capabilities has been added to support the needs above. Two topics, “Nested
application support” and “Application interconnection” are addressed in subsequent sections. In
addition, nested applications in some cases additionally benefit from the use of the Enhanced
allocation property support, described in section 3.6.

3.4 NESTED APPLICATIONS
3.4.1 Use cases for nested applications

A simple, monolithic application is still the best solution in many platforms, however several
common situations occur where a hierarchical, nested application presents a better solution.

The first use case comes from the simple need to want to further structure and encapsulate complex
application structure into a hierarchical structure. While prior to SCA 4.0 an application structure
was “flat”, simply being made of “leaf” components, this limitation no longer applies in SCA 4.0
and beyond. As a result, complex subassemblies can be formed and abstracted into sub-
applications, with applications then formed using these subassemblies. This architectural technique
can enable a subassembly to be used in different contexts, promoting reuse in common asset
libraries such as are employed in software product lines, etc.

21

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

ApplicationManager

v

<<Assembly Controller>>
AppComponent A

h) y
<<Application <<Assembly Controller>> <<Application
Resource>> Resource>>

AppComponent B SMDREEEIy E1 AppComponent D

| 4
<<Application <<Application <<Application
Resource>> Resource>> Resource>>
Component C2 Component C3 Component C4

Figure 12 Simple nested application

An example of this structuring is shown in Figure 12. In this example, an overall application is
made up of four top-level components, with one of the components (AppComponent A) also
functioning as the application’s AssemblyControllerComponent. Component C1 however is not a
simple component created by the normal componentinstantiation in the SAD?, but rather a
subapplication created through an assemblyinstantiation. To AppComponentA this nested sub-
application is abstracted to a single CF::Resource interface, but from a creational standpoint the
“upper level” ApplicationFactoryComponent constructs a true sub-application per a cited SAD file.
As is discussed later, in this example there is no separate ApplicationManagerComponent produced
to manage the sub-application, rather the management all being done by the upper blue
ApplicationManagerComponent. This is a core framework implementation decision, however. An
equally valid approach would be for the sub-application to be managed by an intermediate
ApplicationManagerComponent, with only the CF::Resource narrowed interface made available to
AppComponent A.

A second compelling use-case arises on platforms which provide encryption in such a way that two
or more security domains are established (e.g. plaintext and ciphertext domains). In some high
assurance environments, these domains are distinct and separated (usually by some sort of
cryptographic subsystem) such that control and configuration communications between the
domains need to be minimized. In such a system, it could be beneficial to structure an application
such that it resembles two or more sub-applications, one in each security domain. A typical
representation of this situation is shown in Figure 13.

! Componentplacements are located inside either a componentplacement or hostcollocation element
22

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

ApplicationManager

\j A
<<Assembly Controller>> <<Assembly Controller>>
PtComponent 1 CtComponent 1
[
Y
<<Application <<Application <<Application <<Application <<Application
Resource>> Resource>> Resource>> Resource>> Resource>>
PtComponent 2 PtComponent 3 CtComponent 2 CtComponent 3 CtComponent 4
PT Sub-application CT Sub-application

Figure 13 Security domain divided application

In this example, we see a top-level application wholly consisting of two sub-applications, each
deployed in a different security domain®. In this example the option of having an Application
ManagerComponent? distribute properties and control to two distinct
AssemblyControllerComponents is also employed. Also note that how this application gets
physically constructed is not fully specified in the SCA — a clever implementation could split the
required CF::ApplicationFactory behavior across the security domains as well (while still
controlling this through a common CF::ApplicationFactory interface, minimizing cross-domain
communications.

3.4.2 How nested applications work in the SCA 4.0

While a significant enhancement, support of nested applications in SCA 4.0 is not immediately
obvious, or described in a dedicated section. Instead, such support is “enabled” through a number
of small changes in scattered requirements. The major areas of change supporting this feature are
listed in Section 3.1.3.3.1 (Application), 3.1.3.3.3 (ApplicationFactory), and in several parts of
Appendix D.

3.4.2.1 ApplicationFactoryComponent support for nested applications

In the big picture, an ApplicationFactoryComponent (as fronted by the ApplicationFactory
interface) provides the means to create, from a client’s standpoint, a single, top-level application.
This application is created according to the specifications set out in a set of XML files, culminating
in the Software Assembly Descriptor (SAD), which defines how the application is created. These
SAD instructions include which elements are used, how they are deployed, configured, and how
they are connected. In earlier SCA version, elements always referred to individual components,
which were in turn defined by Software Component Descriptors (SCD) and so on.

2 Not to be confused with an SCA domain — in this system, there is still only one domain manager.
% Application ManagerComponents implement the CF::Application interface and responsibilities,
and are created / supplied by the core framework.

23

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

In SCA 4.0, support for nested applications was added in the SAD by allowing not only the
creation of components (which could be both “leaf” components and
ComponentFactoryComponents) but also for the creation of assemblies. These assemblies, which
function as sub-applications, are represented in the higher-level SAD file by an assemblyinstantion
element, itself contained within a assemblyplacement element. While the method and order of
events is largely left to the implementation, the post-condition is clear — when the application is
constructed, all components represented by the top-level SAD and those of any child SAD files
cited in assemblyplacements have been created, deployed, interconnected, and
ApplicationManagerComponent (reachable by an Application interface) be returned to the client.
Furthermore, only top-level instantiated applications are listed in the DomainManagerComponent’s
applications attribute — the presence of any subassemblies is unlisted.

Just as important is what is not specified in SCA 4.0. Though not an inclusive list, the following
implementation choices were intentionally left in SCA 4.0:

e SCA 4.0 does not specify the order of construction or initialization of the components and
subassemblies.

e SCA 40 neither requires nor prohibits usage of intermediate
ApplicationManagerComponents to manage any sub-assemblies. Put another way, in some
core frameworks, an implementer could choose to have the top level
ApplicationManagerComponent only manage the top level leaf components and delegate
any direct subassembly management to the “sub” Application ManagerComponent, while in
others, a single top-level ApplicationManagerComponent could be employed which was
responsible for all components.

e SCA 4.0 does not specify details on how the nested applications are installed into the
system. As in earlier versions of the SCA, the DomainManagerComponent’s
installApplication() operation only lists a top level SAD — the placement of the necessary
files is assumed to have been previously accomplished, and no assumptions on absolute or
relative directory placement is made.

e The nested SAD file is no different from a top-level SAD file. In this way, an
implementation could allow separate installation of the SAD for standalone (“top level”)
instantiation, while still allowing the application to be used as a sub-application by citing it
from another SAD.

e SCA 4.0, while requiring a single client interface (CF::ApplicationFactory) and compliance
to the requirements of an ApplicationFactoryComponent, does not dictate exactly how the
function of this component is spread across the system. In many systems it will map to a
single component which singlehandedly guides the deployment. However, other compliant
implementations are possible, especially when an application is deployed across processors
or security domains. One example would be where there was a central coordinator which
implements the CF::ApplicationFactory interface, but which delegates some of all of the
creational behavior to subcomponents (which need not implement any specific interface).
This federated deployment in some cases could minimize cross processor or cross domain
communications, speeding up deployment, etc.

24

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

3.4.2.2 ApplicationManagerComponent support for nested applications

The ApplicationManagerComponent* has two broad responsibilities, which were expanded with
the introduction of nested applications within SCA 4.0. The first responsibility is to tear down the
application instance that was created by the corresponding ApplicationFactoryComponent, and
from a postcondition standpoint this behavior remains the same in SCA 4.0. When nested
applications are supported in SCA 4.0, the allocation of the teardown responsibilities is
unspecified. One common implementation would be for the top level
ApplicationManagerComponent to only manage top level components, with one of those
“components” itself being a distinct ApplicationManagerComponent which manages its
subapplication components. The advantage of this approach is one of symmetry (“each SAD
creates an application and is managed by an ApplicationManagerComponent”) and greatest
similarity to prior SCA core framework implementations. Other implementations are valid,
however. For example, SCA 4.0 does not require ApplicationManagerComponents to manage the
sub-application components — instead a single, top-level ApplicatoinManagerComponent could be
responsible for teardown of all components (and port disconnection, etc.). This approach in some
cases may be more efficient or centralize the domain data.

ApplicationManagerComponents are also responsible for distributing client calls made through the
CF::Resource interface (which is specialized by the CF::Application interface) to the application.
In versions prior to SCA4.0, distribution was straightforward, as all calls were to be passed to a
single CF::Resource supporting component (not an assembly) that was designated as the
assemblycontroller in the SAD. If the DMD accardinality attribute has a value of “single”, the
conventions of only one designated assemblycontroller, which is itself a component, and the
ApplicationManagerComponent responsibilities remain the same.

However in implementations that implement the NestedDeployment UOF and have a DMD
accardinality attribute with a value of “multiple”, multiple assemblycontrollers are allowed and
those assemblycontrollers are allowed to refer to an assemblyinstantiation. When this is the case,
the ApplicationManagerComponent is no longer able to blindly forward configure(), query() and
runTest() as it did before. Instead, it must examine each individual property and test, and forward
it to only the appropriate assemblycontrollers based on the information contained in the top level
SAD and derived XML files of the application (which in the nested case would include at least one
additional SAD). Additionally, as multiple properties can be listed in a configure or query call, the
ApplicationManagerComponent may also be required to break up configure and query calls, as
well as potentially combine their results and exception behavior.

3.5 APPLICATION INTERCONNECTION

3.5.1 Overview

An alternative to having a simple, monolithic application would be to have multiple independent
applications that collaborate with one another. The SCA 4.0 application interconnection capability
provides a uniform approach to address the problem of how to establish connections between
framework components modeled as applications. Prior to the introduction of this capability there
were multiple solutions regarding how this problem should be addressed which complicated

* Prior to SCA 4.0, there was no formal ApplicationManagerComponent, instead all requirements
were allocated to an unnamed CF component which implemented in the CF::Application interface.

25

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

software reuse and portability. The introduction of this capability should alleviate those problems
and ensure that a realization of this approach is available across platforms.

3.5.2 Use case for interconnecting applications

An alternative to having a simple, monolithic application would be to have multiple independent
applications that need to collaborate with one another. A use case which highlights the need for this
capability would be one that would reinforce the separation of concerns and loose coupling of a
well architected system. For example, a radio platform might have an associated android
presentation layer that provided an implementation of a general purpose user interface that could be
used to manage and monitor the system. In this scenario the system could have been designed and
implemented in accordance with the Model, View, Presenter pattern where the applications to be
connected would have be the waveform (Model) and Ul intermediary (Presenter).

Earlier SCA versions did not have a means to form these connections. Their SAD contained the
externalports element which by definition provided a means for a component (application or
otherwise) external a waveform to be connected to an application, but no framework construct
existed to establish those connections. Typically the gap was filled by introducing an additional
component within the system that had the responsibility for connection establishment.

3.5.3 Application interconnection design

SCA 4.0 defines a formal mechanism to utilize the externalports element as the conduit through
which the framework is able to manage the formation and destruction of those inter-application
connections. The external port connection construct provides a good solution for this problem
because of the nature of the problem — the two applications that need to be connected have a
dependency on one another for the connection to be created but they are created independently and
there are no guarantees that they will be created together. The connection mechanism needs to
know how to accommodate instances when one side of the connection exists and the other does
not. However, if both sides of the applications are created then the applications are always
connected.

26

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

External Port Connection

SAD B ‘u":l'cruld use“ the apprcr_ach_ln
Figure 16 “Inter-application
DeploysB _ = ~|” connections with external
ConnectsB —» A & ports” to do this
SAD A
Deploys A

. R

A ﬁ

_ 4 Deploy 0..n B's
- Number of B's created could
vary in this Use Case

cee
k

— .

Figure 14 Inter-application connections

3.5.4 Application interconnection implementation

Building upon the earlier scenario, both the waveform and the presentation layer will have their
connections laid out in their respective SAD files. The android presentation layer, application A,
contains a provides port that can be accessed and used by other applications, so it advertises that
port within its externalports element as a providesidentifier. The waveform, application B, wishes
to be connected to the presentation layer’s external port, so in one of its SAD connections it defines
a connection between its local uses port and the externally provided provides port from A. The
example illustrates that only one of the applications needs to define the connection for it to be
processed by the framework.

27

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

SAD B external port name
<connections> 7 |
SAD A <connectinterface id="B_to_A"> .
<usesport> o
<softwareassembly id="DCE:1..." name="A_fac"> <usesidentifier>B_out_port</usesidentifiep*
<componentinstantiationref reﬁd="DCE:/14.." >
<externalports> </usesport> ’
<port> <providesport> % %
<providesidentifier>A_ext_in_port</providesidentifier> <providesidentifier>A_ext_in_port</providesidentifier>
<componentinstantiationref refid="DCE:1..." /> <findby>
</port> <domainfinder type="application" name="A_name" />
</externalports> </findby>
. 7 </providesport> 5
</connectinterface>" /
</connections> L —
4
Looking for any application in
ﬁ the domain named “A_name”
Application - = Application A/
(A_name) . o (gp_name)
N,
() > Application Factory
(A_fac) Application Factory
\ (B_fac)
B_AC /

Figure 15 Connectivity specific example

3.5.5 ApplicationFactoryComponent support for interconnected applications

The specification introduces a new type, application, to the domainfinder element. The semantics
associated with this type provide instructions to the framework regarding which elements are to be
involved within the connection and how it should be formed. The ApplicationFactoryComponent
retrieves the connection endpoint via the domain’s domainfinder element. When the application
type is used, no implicit creation behavior is intended, so if one of the application endpoints does
not exist, the framework is not expected to instantiate the missing application. If neither endpoint
can be resolved, then the specification allows for an implementation specific behavior - although
the desired approach would be for the connection to be held in a pending state until it can be made
(note that in this approach either the waveform or the framework will need to have sufficient
safeguards in place to insure that a call to this connection does not result in an unexpected or
uncontrolled termination). An alternative solution would be to prevent the application from being
created, although this seems to as if it would be excessive because the waveform should have been
built such that there was not a critical dependency between the applications.

28

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

S5AD B
[External Port A_Port J External PortB Port Deploys B_AC
SAD A \ . Declares External Port B_Port
1 \ ConnectsB_Port —»A_Port
Deploys A_AC 1 \ - -
Deploys A_Comp 1 \
Connects A_AC —» A_Comp 1 \\
DeclaresExternal Port A_Port Application IR 0 VR - e
(a) _ 1 (B)

Logical Connections

The logical connection from an
“external port” perspective is Application Factory
also a port connection between
the two applications.

Application Factory

!
A_Comp :Id——[A_AC é

[
'y
1

B_AC

Figure 16 Inter-application connections with external ports

The domainfinder element allows for multiple connection strategies that the
ApplicationFactoryComponent must be able to accommodate depending on what information is
provided in the domain profile file. When only the application name is specified then any existing
ApplicationManagerComponent in the domain with that name can be used. When both the
application factory name and application name are specified, only the named
ApplicationManagerComponent created by the specified ApplicationFactoryComponent is
returned. When only the application factory name is specified then any
ApplicationManagerComponent created by the specified ApplicationFactoryComponent may be
used.

3.6 ENHANCED ALLOCATION PROPERTY SUPPORT

3.6.1 Overview

Several use cases exist that require the framework to have the ability to constrain the deployment of
application or nested application components. SCA 2.2.2 provided this capability with the
introduction of the SCA Extension and its channel deployment functionality. Those constructs were
not only included with the incorporation of the Extension within SCA 4.0, but comparable
capabilities were also added with the introduction of nested applications. The nested application
SCA 4.0 elements extend the SCA 2.2.2 SCA allocation properties to make them more dynamic
and accessible to nested applications. The new constructs provide users with the ability to deploy
nested applications to different domains as well as most of the other capabilities associate with
traditional allocation properties.

29

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

3.6.2 Descriptor structure for nested applications

The SAD file composition was modified in SCA 4.0 to accommodate nested applications. An SCA
4.0 application consists of 0 or more components and O or more nested applications. The nested
applications incorporate a new element, applicationinstantiation, which is similar to a
componentinstantiation, although it has different sub-elements.

Nested applications are similar to an ApplicationResourceComponent in that they can receive
properties, deviceassignments and deploymentdependencies. However they differ from those
components in that they cannot be created by a ComponentFactoryComponent. The information in
the applicationinstantiation element is intentionally similar to the ApplicationFactory::create()
call. This similarity permits an implementation to use the ApplicationFactory::create() operation to
create a nested application.

<!ATTLIST componentfile

id D #REQUIRED Type can now be “software package

type CDATA #IMPLIED> — descriptor” or “software assembly
<!ELEMENT partitioning descripior

(componentplacement | hostcollocation

| assemblyinstantiation) Assemblies may consist of both
) +> components and assemblies (e.g.
<IELEMENT assemblyplacement SAD). However, assemblies
. cannot be inside hostcollocaton
(componentfileref sections and cannot be created
, assemblyinstantiation+ by component factories.
) > New element, modeled after

<!ELEMENT assemblyinstantiation////F___ componentinstantiation.
Componentproperties (configureproperty type
only), override nested SAD similar to that in
, componentproperties? , create call. and deviceassignements and
deploymentdependencies act in the same way
as if passed into ApplicationFactory::create().

(usagename?

, deviceassignments?,

, deploymentdependencies?
) >

Nested assemblies can also serve as

<!ATTLIST assemblyinstantiation
4 " //’,,///”’/’/__ assemblycontrollers (via their CF::Resource
= D REQUERED> / CF::Application interface)

3.6.3 Enhanced Allocation Properties in SCA 4.0

SCA 2.2.2 allocation properties could only be set in .prf files, and not overridden. Similarly,
dependencies were specified in .spd files, and could not be overridden. This severely limited the
manner in which they may be used.

The SCA deploys components by evaluating dependency requirements against existing component
allocation property definition. As an example a DeviceComponent (or other component) defines an
allocation property in a .prf file as follows:

30

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

<simple id="RadioChannel" type="short" name="RadioChannel">
<value>0</value>
<kind kindtype="allocation"/>
<action type=“eqg"/>

</simple>

Then a component to be deployed establishes a dependency against the allocation property by
stating the type of device it requires:

<dependency type="RadioChannelDependency">
<propertyref refid= "RadioChannel" value="5"/>

</dependency>

If the dependency can be satisfied by one of the component allocation property definitions within
the domain, then that DeviceComponent becomes a usage or deployment candidate.

SCA 4.0 provides the ability to override component allocation properties in the
componentinstantiation section. This allows a system designer to assign different values to
allocation properties on a per-instance basis, e.g. “the channel 4 instance of the GppDevice gets the
deployedChannel allocation property overridden to 4”. In prior SCA versions, a system designer
would have had to edit the component’s .prf file or use the SCA extension .pdd file to accomplish
this. SCA 4.0 also introduces the capability to specify SAD and create() based
deploymentdependencies. The deploymentdependencies element specifies a list of dependencies
which can override SPD defined dependencies (either within deployment or as part of a uses device
connection). The dependency relationship is overridden, not the allocation property, which differs
from other “property overrides”. Lastly, a list of deploymentdependencies can be passed into the
ApplicationFactory::create() operation to allow client-controlled dependencies (e.g. radio channel)
to be specified.

3.6.4 Dependency Hierarchies in SCA 4.0

SPDs define the dependencies for a particular component type unless overridden, these apply to all
instances of the component.

As shown in Figure 17, SAD componentinstantiations can optionally override a dependency for a
given instance — if the SPD uses the dependency for deployment or usesdevice relationships. This
would, for example allow an application to place two instances of the same component in different
domains.

An optional top-level SAD deploymentdependencies element allows for global dependency
overriding across all applicable application components (see Figure 17). Using this approach does
not impose the dependency on a component, but overrides it as if a like-named dependency existed
within the component’s SPD. This approach is likely more applicable within an assembly that uses
nested applications.

31

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

ApplicationFactory Create()
Deploymentdependency
parameter
(override)

Y
SAD top-level
Deploymentdependcy
(override)

l

SAD componentinstantion
Deploymentdependcy
(override)

Only apply dependency if
it name matches .spd
v dependency

SPD Implementation -level
Dependency

\J

SPD-level Dependency

Figure 17 Dependency Hierarchy

At the highest level of the dependency hierarchy, a client can optionally supply
deploymentdependencies which could be applied to the entire application. A common usage
scenario would be to specify a radio channel placement dependency. As Figure 18 depicts, when
application nesting is used, the rules stay the same but overriding occurs from the outermost SAD
(highest precedence) to the innermost SAD. An additional deploymentdependency is added to the
assemblyinstantiation element. This allows dependencies to be supplied that would apply to that
nested application (and any of its children). A common usage scenario for this capability would be
to place distinct sub-applications in different domains.

32

SCA Specification 4.0 User’s Guide

ApplicationFactory Create()

deploymentdependency
parameler
(override)

Y
SAD top-level
deploymentdependency
(override)

SAD assemblyinstantion
deploymentdependency
(override)

Y
SAD top-level
deploymenidependency
(override)

SAD componentinstantion
deploymentdependency
(override)

Y

SPD Implameantation -level
Dependency

v

SPD-level Dependency

Quter SAD

Inner SAD

Version: 1.0
07 November 2012

Figure 18 Dependency Hierarchy and Sub-Applications

The following table provides an example of a class of allocation properties and how they might be

used within a system:

t | Typicaluse

ApplicationFactory Create()
by client

Outer .sad top-level

Quter .sad
assemblyinstantiation

Nested .sad top-level

Nested .sad
componentinstantiation

.spd dependency element

.prf allocationproperty
DEFINITIONS

Controls placement of an specific application instance.
Typical use would be placementon a specific radio

channel and/or domain

Uncommonly used. Controls placement of an overall

application that is not instance specific

Controls placement of a given nested application

instance.

Controls “hard coded” placement of a nested application.
Used when instance-specific overriding is not used /
needed. Typical use would be for forcing locationto a

specific domain

Uncommonly used

Defines dependencies actually needed by a component.
Note that if not specified, cannot be overridden. “Default”
values allowed

Set in .spd/ .scd prf files, can be overridden at
componentinstantiation

Figure 19 Allocation property examples

radioChannel eq 2

domain eq “green”
(if instance specific)

domain eq “purple”
(if fixed for application)

radioChannel eq 0
domain eq “white”

radioChannel =5
domain = “blue”

33

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

3.7 SCAWAVEFORM CONSTRUCTION
3.7.1 Overview

The SCA component structure contains a collection of building blocks that a product developer can
combine in order to produce a deliverable, e.g. a waveform or service implementation. The process
of creating an end product requires a series of engineering decisions, which from an SCA
perspective are centered on decomposing the overall product functionality into encapsulated
elements that can be integrated with the defined SCA components.

3.7.2 FM3TR waveform example

The publicly available FM3TR waveform architecture is illustrated in Figure 20 (this waveform is
available from the JTRS Open Source Information Repository [13]). The yellow-colored
components represent radio set functionality, whereas the red and blue colored blocks represent
waveform software components.

SCA contains component definitions that should be used for each macro-sized component. Any of
the macro-sized waveform components, for example the Data Link Control (DLC) component,
could be implemented by aggregating several smaller modules or routines, but those routines would
be bundled and it would only expose functionality to external users via a consolidated set of
interfaces.

SCA utilizes a “port” construct as the mechanism by which a component may be extended to
provide application specific functionality —and behavior. The Dblue and red
ApplicationResourceComponents on the GPP expose: in, out, and control ports. The core
framework can connect the port interfaces to other ApplicationComponents or
PlatformComponents in order to provide overall waveform functionality. Generally, the ‘in’ ports
are described as ‘provides’ ports, whereas the ‘out’ ports are ‘uses’ ports, because they either
provide or use port connections, respectively.

Using either the middleware services provided by the radio set, or direct C++ pointers, connection
IDs and object references permit independent software components to communicate. The
components only need each other’s pointer or object reference. The messaging becomes more
difficult if the components are distributed into separate memory partitions. For such deployments,
middleware services allow a general solution to be applied throughout the complete radio set.

34

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

! 1

' A 1

E / RightOut Leftin RightOut Leftin RightOut Leftln RightOut Dataln SCA-CF :

' Net i

: Device) ' EG -

! ode A DataOul |

H (Data) !

i Platform | RightIn 1 o4 Rightln | oicf Rightln | T Rightln MHAL !
<«——| Specific Gt St Gl Cirl Modem |Platform| |}

: Comm. MACModemOutPort Device | Specific E

E (Ethernet) VSDOutPort CVSDInPort Voiceln Comm. '

H CVSD Voice !

! ST [T MACInPort MACOutPort AC / 1 nilgd

' A (]

)

1

'

'

'

'

]

|

'

/SD I 1

' - E
SRl MACModeminPort ¢ LJ |
1

1

1

]

1

1

! 3

E DSp 1&Q

i [Platform Data Add S-code CPFSK l00/]
<«—» Specific

Conditioning (Data/Voice) Modulation

E Comm. Analog
! RF I
E 2L Front
¢t [Platform e : i Rode PFSK EOPPINE. | TADC | End
«—p| Specific [t Correlator Demodulation |
Comm.

D Set Components

Figure 20 Example FM3TR SCA Waveform Design

The FM3TR waveform is a simple time domain multiplexed access (TDMA) application with
Continuous Phase Frequency Shift Keying (CPFSK) as the baseband modulation. The JTRS
implementation provides either data or voice operation. Continuously Variable-Slope Delta
modulation (CVSD) is implemented for the vocoder. Reed-Solomon (R-S) forward error coding is
used to improve the bit reliability of the wireless link.

The Data Multiple Access Control (MAC) is an SCA ApplicationResourceComponent that
converts the input data stream into data symbols grouped to match the R-S coding format. The
voice MAC performs a similar operation for the data stream produced by the vocoder. The A-code
is a simple 32-bit synchronization code used to synchronize transmitter and receiver. The S-code is
a second synchronization word used to identify data packet types such as voice, data, etc.

The architecture and deployment of this waveform is fairly typical for SCA implementations,
although other variations are possible. In this example, the waveform components deployed on the
FPGA and DSP do not have SCA interfaces. Historically radio architects have attempted to wring
the last drop of performance from the DSP and FPGA devices and not implemented SCA interfaces
on these lower-level software components. There is a substantial cost for this strategy — a loss of
portability for these waveform components. However, advances have made extending the full SCA
model beyond the bounds of the GPP much more technically feasible.

An example logical model of an FM3TR radio is illustrated in Figure 21, complete with radio
devices, services, and core framework components.

35

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

A —— .+ [Core

Domain Device File File + |Framework
- |Manager| |Manager Manager System ,

= I = .| Radio

GPS Application | | FM3TR [= ' | services
. | Device || Device || Factory Waveform | :

Vocoder . User o Radio

MHAL | [Timing Linux [User

Device Service RTOS ' |Application

. S— Al

...........

- B R A T S I S d

Figure 21 Example Deployment of FM3TR

3.8 RESOURCE AND DEVICE INTERFACE DECOMPOSITION
3.8.1 Overview

SCA 4.0 reworked the composition of the resource and device interfaces as a component of the
other changes that occurred within the specification. Two primary changes occurred; the first of
which removed the inheritance relationship between the Resource, Device, LoadableDevice and
ExecutableDevice interfaces; the second created new lower level interfaces and shifted some of the
attribute and operation definitions to those new interfaces. The finer granularity of the SCA 4.0
interfaces provides the developer with the ability to create more secure and lighter weight
components. The net impact of the changes is that the content of the top level interfaces, e.g.
Resource, will be roughly identical to that of prior SCA versions; however trivial modification will
need to be executed within the implementations to accommodate the new structure. The requisite
changes should be straightforward and oriented toward moving code around or changing the format
of an operation invocation and not introducing new logic. This illustrates the change in the
interface inheritance relationships from the perspective of the ExecutableDevice interface.

36

SCA Specification 4.0 User’s Guide Version: 1.0
07 November 2012

> Note: Interface Inheritance is removed to avoid hitting the optional inheritance link \
<= limitation. Backward Compatibility should not be severely impacted due to:
CF::Resource 3
1)To better facilitate the “push model”, components should be collected as

ComponentType structs, not simple references (ComponentType defined in

% Deployment Optimizations)
2) If Resource, Device, LoadableDevice, ExecutableDevice references do need to he
<j> combined in the same collection, they can still be treated as opaque
CF::Device CORBA::Objects . -)
’ \
/ \
% <> L <j>
! CF::Resource CF::Device
<=
CF::LodableDevice

<i= <i=

<i> CF::LodableDevice CF::ExecutableDevice
CF::ExecutableDevice

[SCAv2.2.2 } [SCA4.0]

Figure 22 ExecutableDevice Interface Inheritance Relationship

3.8.2 Resource Related Modifications
3.8.2.1 Resource interface changes

The new structure of the Resource interface supports the SCA 4.0 optional inheritance pattern as
well as the least privilege pattern employed within the JTRS APIs. The changes transform the
interface into an empty shell that serves as a common, well known entry point for an interface user
to a component that realizes the interface. From the user’s perspective, there is the assurance that
they will always interface with a CF::Resource and not a proprietary variant of the interface that
was tailored to obtain a specialized realization. The flexibility and power of the approach becomes
apparent when it is evaluated from the provider’s perspective. Figure 23 highlights the Resource
interface changes. The Resource shell was created by moving the identifier attribute to the new
Componentldentifier interface and the start and stop operations to the ControllableComponent
interface, leaving nothing directly within a Resource.

37

SCA Specification 4.0 User’s Guide

Note: These attributes
and operations are
refactored to allow for
optional inheritance .

<j>

CF::Resource

er -
TUCTTUTTST

Version: 1.0

07 November 2012

<>

CF::Componentldentifier

> identifier

<j>

CF::ControllableComponent

»® start()

atartd
7
Votan()

vy

3 stop()

Figure 23 Resource Interface Refactoring

As seen in Figure 24, all of the inherited Resource interfaces, with the exception of LifeCycle, may
be optionally in